

A Single-pixel Gamma Imaging System

D. Wang, I. N. Ruskov, H. Hu, Yu. N. Kopatch, D. N. Grozdanov, N. A. Fedorov, and F. A. Aliyev

01/06/2018

The Gamma-ray Imaging

Why Coded Aperture?

Higher SNR, Satisfactory Spatial Resolution

Widely Used In:

X-ray/Gamma-ray Astronomy Nuclear Medicine Nuclear Security Nuclear Industry

. . .

Two steps of coded-aperture gamma-ray imaging:

- 1. the coded aperture imparts a spatial modulation onto gamma rays, resulting in a coded image;
- 2. The source distribution can be recovered from the coded image.

From Multi-Pixel to Time-modulated Aperture

poor energy resolution or poor spatial resolution or too costly

excellent energy resolution good spatial resolution cost-efficient

• • •

. . .

The Single-Pixel Gamma Imaging System

Before each measurement, we changed the aperture pattern according to a pseudo-random number sequence.

Coded Aperture:

two groups of orthogonal bars made of square steel rods self-supporting geometry

Detector:

3 inch BGO crystal
Hamamatsu PMT R1307
shielded by 5-cm-thick lead bricks
Φ5cm entrance window

Source Reconstruction Method

Compressed Sensing (CS) theory: a sparse signal can be recovered with high confidence from a small set of linear, nonadaptive measurements.

$$\begin{cases} a_{11}f_1 + a_{12}f_2 + \ldots + a_{1N}f_N = g_1 \\ a_{21}f_1 + a_{22}f_2 + \ldots + a_{2N}f_N = g_2 \\ \ldots \\ a_{M1}f_1 + a_{M2}f_2 + \ldots + a_{MN}f_N = g_M \end{cases}$$

f— the unknown source distribution **g**— detector's response

Underdetermined equations? Seek a sparse solution in space Φ:

Minimize
$$||\mathbf{x}||_1$$
, subject to $||\mathbf{A}\boldsymbol{\Phi}\mathbf{x}-\mathbf{g}||_2 < \eta$ and $f = \boldsymbol{\Phi}\mathbf{x} \ge \boldsymbol{0}$

Test I: ¹³⁷Cs and ⁶⁰Co

Gamma-ray Sources: 60Co (1173, 1332 keV) and 137Cs (662 keV)

Activity: 60Co ~70 kBq, 137Cs ~100 kBq

Location: ~240 cm to the detector, 60 cm separation distance

¹³⁷Cs and ⁶⁰Co: Energy Spectrum

Measurement No. 1

Background (Shield the entrance window)

Energy Spectrum of the incident gammas

¹³⁷Cs and ⁶⁰Co: Full-Energy Peak Areas

24 Measurements, each lasted 2 hours

¹³⁷Cs and ⁶⁰Co: Source Reconstructions

⁶⁰Co: 1173 keV

Photography

20×20 Pixels

Recovered Sources

⁶⁰Co: 1332 keV

¹³⁷Cs: 662 keV

Test II: 238 Pu-Be Neutron Source

Activity: 1.2×10^{10} Bq

Neutron: ~10⁶ n/s

Paraffin Moderator: 30cm×30cm×25cm

4.44 MeV gamma rays from:

$${}_{2}^{4}\alpha + {}_{4}^{9}Be = {}_{6}^{12}C^{*} + {}_{0}^{1}n$$

2.22 MeV gamma rays from:

$${}_{0}^{1}n + {}_{1}^{1}H = {}_{1}^{2}H + 2.22 \text{ MeV}$$

²³⁸Pu-Be: Energy Spectrum

Before background subtraction

After background subtraction

²³⁸Pu-Be: Full-Energy Peak Areas

72 Measurements, each lasted 30 minutes

²³⁸Pu-Be: Source Reconstructions

20×20 Pixels

Reconstruction: 4.44 MeV

Reconstruction: 2.22 MeV

Geant4 simulation: 2.22 MeV

Some Possible Improvements

Coded aperture from heavy material

—

Higher spatial resolution

Detector with higher energy resolution

Detector with higher efficiency

Better shielding of the detector

Several detectors instead of only one

Shorter measurement time

Less measurements

Thanks for Your Attention!